

MED Greenhouses – An innovative geothermal technology for energy & water use efficiency in greenhouse sector

Prof. Dr. Alexandros Papachatzis – Project Coordinator

CIrCIE 2019
Nicosia, Cyprus

Project co-financed by the European Regional Development Fund

Short description

The project will **Capitalize** the **results** of other EU successful projects by **promoting, disseminating & transferring innovative Greenhouses** in the MED area, minimizing water & energy demand.

The project will stimulate environmental awareness on issues related to energy & water efficiency & sustainable production, contributing to Green Growth & promoting sustainable development.

Partnership

Project Partners:

LP: TEI Of Thessaly (LP) - **Greece**

PP1: University of Thessaly - **Greece**

PP2: Region of Thessaly - **Greece**

PP3: Molise toward 2000 - Italy

PP4: EEIG Euro-Mediterranean Water Information System Technical Unit - France

PP5: Spanish National Research Council - Spain

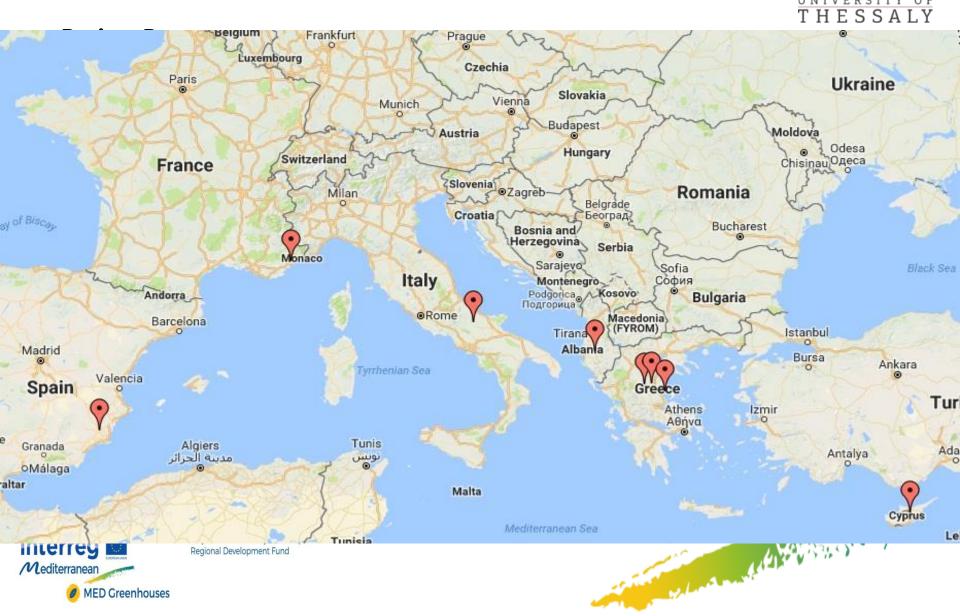
PP6: Regional Council of Berat- Albania

PP7: Agricultural Research Institute - **Cyprus**

Associated Partners:

- 1. RIEGOS Y TECNOLOGÍA S.L (RITEC) **Spain**
- 2. Regione Molise **Italy**

Total: 8 Partners & 2 Associated / 6 Countries



Partnership

MED Greenhouses

Objectives & Expected Results

Project Objective: To improve eco-innovation capacities of public & private actors in the greenhouse/agriculture sector through stronger transnational cooperation, knowledge transfer and better networks between research bodies, businesses, public authorities and civil societies.

Project Results:

- 1. Develop, promote & integrate policy Recommendations in local & regional planning in order to boost eco-innovative investments at transnational level.
- 2. Establish an Agricultural Innovative Cluster in the MED area creating synergies & cooperation mechanisms between the actors of quadruple helix.
- 3. Increase the capacity building of the members of the innovative cluster through knowledge transfer & training courses.

Work Packages & Activities

Act.2.1 Communication Strategy

Act.2.2 Dissemination material

Act.2.3 Links with Horizontal projects

Act.2.4 Project Official Page through

MED Platform

Act. 1.1 Project Management & Coordination

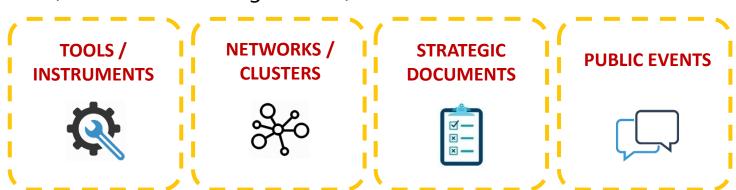
Land Sand (Control of the Control o

Act. 1.2 Project's evaluation

Technologies & Stakeholders

Act.3.2 Transferring knowledge

Act. 3.3 Synergies & Establishment of Transnational Innovative Cluster


Project co-financed by the European Regional Development Fund

Project's Main Outputs

Main outputs: 2 tools, 2 Strategic Documents & 1 Cluster

- Policy recommendations favouring cooperation between actors of the 4helix
- Joint MED Action Plan transferring innovative greenhouses in the MED area
- E-learning platform (including training course material)
- Tailored policy recommendations for the establishment of innovative greenhouses
- Establishment of Agricultural Transnational Innovative Cluster (Memorandum of Agreement)

What do we want to achieve?

☐ Exchange knowledge, experiences & ideas with partners of the community in the fields of sustainable agriculture & cluster development.
☐ Promote innovative Greenhouses in MED area and develop a transnational network by participating in events of the GG community.
☐ Develop, promote & integrate policy recommendations in order to boost eco-innovative investments at transnational level.
☐ Create synergies & cooperation mechanisms between the actors of the GG community and the members of Agricultural Innovative Cluster in the MED area.
☐ Increase the capacity building of the members of the innovative Cluster.

Geothermal hydroponic Greenhouses

UNIVERSITY OF THESSALY

- **☐** Objectives & Incentives
- □ Introduction of MED Greenhouses
- ☐ Pros & Cons
- **☐** Indicative Construction Cost
- **☐** Transferability factors

Objectives

The Innovative Technology of MED Greenhouses aims to address issues related to energy & water efficiency & sustainable agricultural production, contributing to Green Growth & Circular Economy.

Incentives 1/2

- □ Contribute to Climate Change Adaptation, coping with:
 - Water scarcity
 - Water pollution
 - Extreme weather conditions

Incentives 2/2

- □ Addressing issues of agricultural production:
 - Water availability
 - Increased cost for energy
 - Increased cost of raw materials
 - Increased market competition
 - Increased demand for product quality
 - Loss of agricultural land for other activities

UNIVERSITY OF THESSALY

Project co-financed by the European Regional Development Fund

Overview of the Construction process

MED Greenhouses

UNIVERSITY OF THESSALY

THESSALY

Subsystems:

- ☐ Natural cooling & ventilation system
- ☐ Dynamic cooling & ventilation system
- ☐ Heating system
 - Geothermal heat pumps
 - Oil boiler
- ☐ Curtain / thermal insulation curtain system
- ☐ CO₂ Enrichment System
- ☐ Air Drying System
- ☐ Hydroponics system
 - Closed System
 - Open system
- ☐ Central System Control System

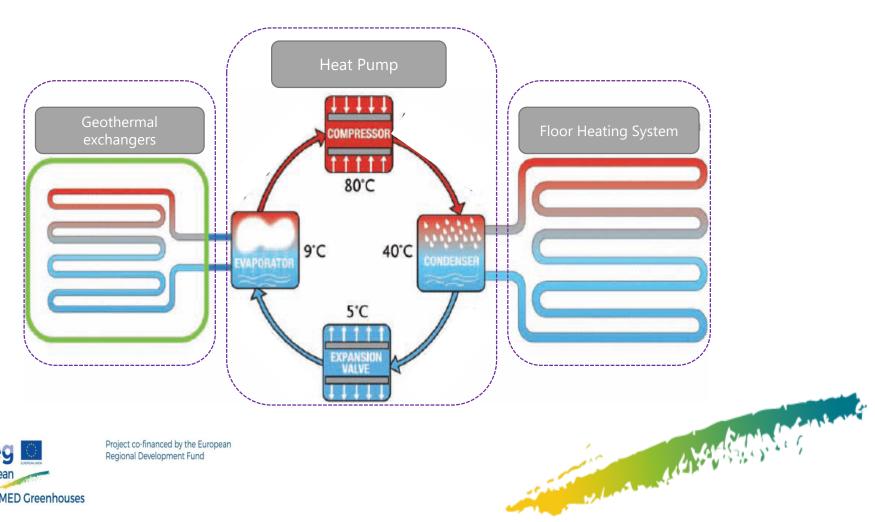
Natural cooling & ventilation system (Top windows)

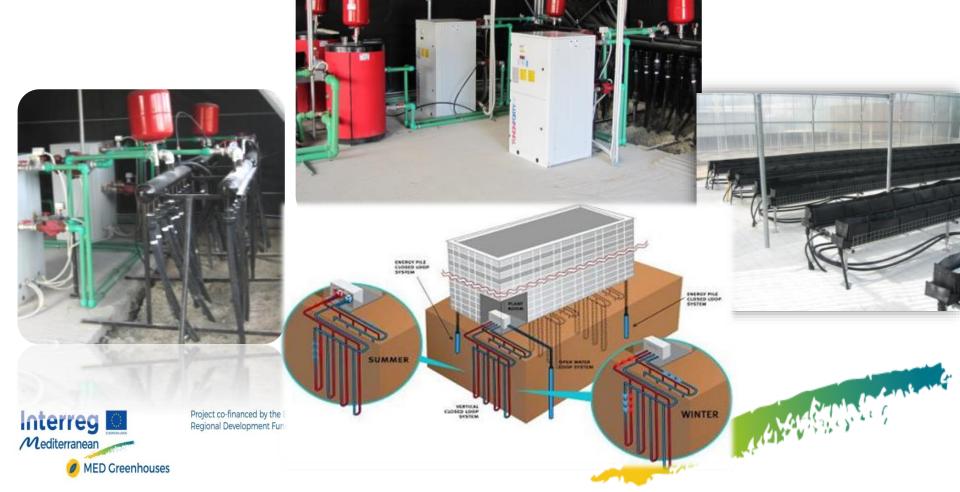
Project co-financed by the European Regional Development Fund

Dynamic cooling & ventilation system (Blinds, Fans,

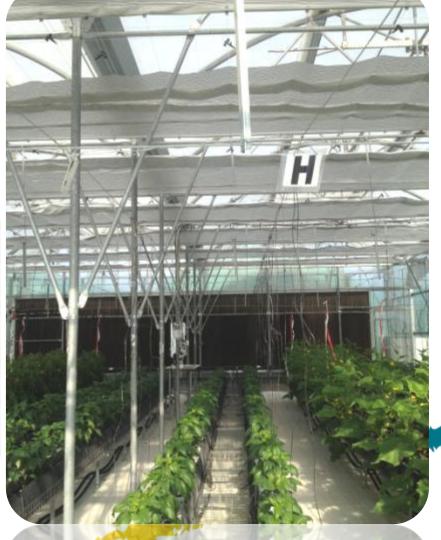
Geothermal Energy Subsystem

	The gre	enhouse	s' ene	ergy ne	eds for co	oling,	heating a	nd conv ϵ	ersion
of	water	vapour	are	being	covered	by a	a vertical	closed	loop
ge	otherm	al system	n which	ch is bu	uilt next to	o the	greenhous	ses, explo	oiting
th	e availak	ole shallo	w ge	otherm	al energy	field.			


- ☐ This system offers significant advantages over other forms of energy as it is a renewable energy source which does not burden the environment with additional pollutants, reducing carbon emissions footprint.
- ☐ MED Greenhouses are based on Geothermal Heat Pumps Systems that exploit shallow geothermal energy (exploitation of stored energy of low depth rock and surface / ground water with temperatures <25°C)


The system consists of the following 3 parts:

Project co-financed by the European Regional Development Fund



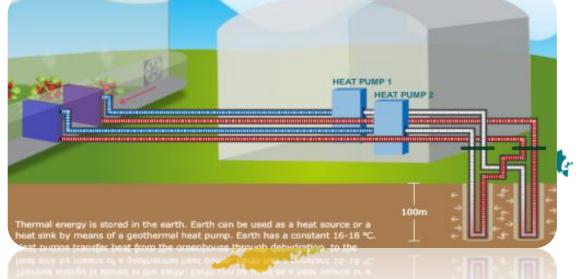
Curtain / thermal insulation curtain system

Project co-financed by the European Regional Development Fund

CO₂ Enrichment System

☐ Air Drying System

Interreg


Mediterranean

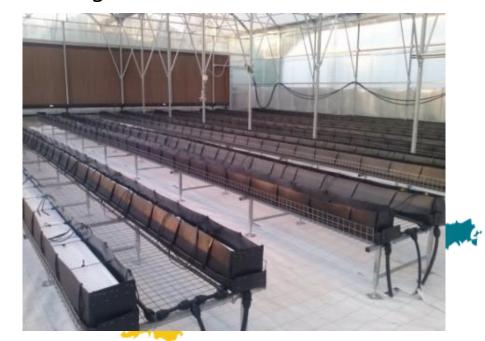
MED Greenhouses

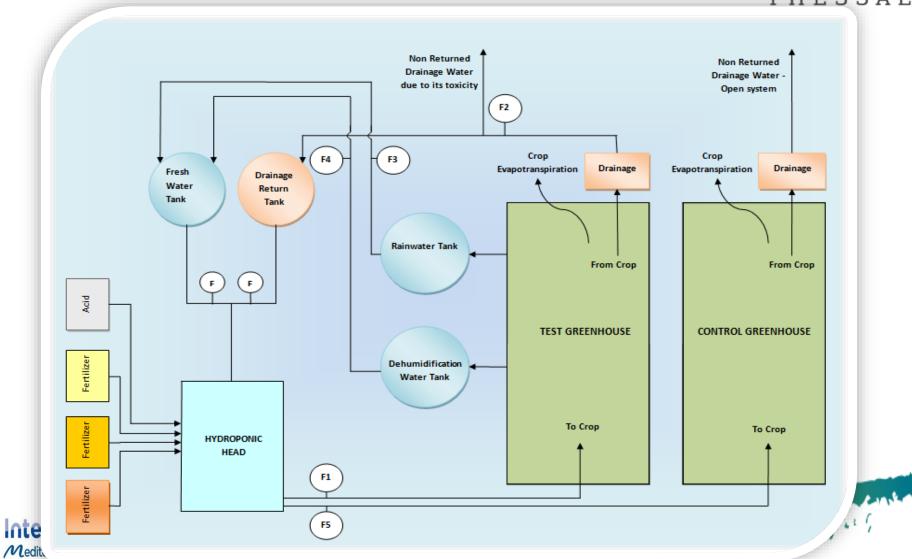
Project co-financed by the European

- ☐ Concentration of water in the greenhouse by means of a cold heat exchanger
- ☐ Air with high relative humidity passes through a cold heat exchanger
- ☐ Coolant heat exchanger temperature lower than dew point
- ☐ The humidity of the air is converted into water

□ Hydroponics system

- Closed System
- Open system




MED Greenhouses

Project co-financed by the European Regional Development Fund

- ☐ Head of hydroponic system with containers of thick nutrient solutions & clean / drainage water
- ☐ Preparation of nutrient solution with EC and PH control
- ☐ Circular watering
- ☐ Growing on rockwool substrate

MED Greenhouses


Central System Control System

- Easy Greenhouse management
- Remote control / setup

ltem	Price per m2 (€/m2)	Cost (€)	
Structure	16,30	16.300	
Reinforcements Tomato crop	0,50	500	
Top Plastic Cover	1,18	1.180	
Sides Polycarbonate	2,33	2.330	
Insect Proof Net	0,19	190	
Inside Thermal screen	2,5	2.500	
Outside Thermal screen	6	6.000	
Irrigations System	1,88	1.880	
Drainage Collection	0,43	430	
Climate Control	0.49	490	
Cooling System	5	5.000	
Assimilation Lights	12,42	12.420	
Air Circulation Fans	0.4	400	
Electrical Installation	1,42	1.420	
Gas Condenser	1,8	1.800	
Boilers & Burners			
Expansion Installation			
Central Dosing CO2		25.000	
Heat Storage tank	25		
Central Dosing CO2	25		
Transport Lines, Pipe Rail and accessories			
Part Flow Filter			
Fan Coil	1,72	1.720	
CO2 Dosing System	0.4	400	
Electricity Generators	1,32	1.320	
Clean Water Tank	0,09	90	
Ground Cover	0,97	970	
Rockwool Substrate	2,03	2.030	
Ground Gutters	1,34	1.340	
Total price	85.71	85.710	

ltem	Price per m² (€/m²)	Cost (€)
Greenhouse unit, Control system, heating, ventilation and cooling systems, Supporting-Auxiliary building	207.17	89.500
Hydroponic system	108.8	47.000
Thermal screen andCO2 dosing system	53.24	23.000
Geothermal drillings and heat pumps	186.8	80.700
Total cost	556	240.200

Disadvantages of MED Greenhouses

- ☐ The up-front **high capital cost** in order to establish the MED Greenhouse. Although such investment seems profitable, the need for drilling and installing this innovative technology increase the cost of the construction/investment. **Overall, it is worth-wile to invest in large scale geothermal greenhouses, payback.**
- □ A drawback of applying geothermal energy in greenhouse operation is, additionally, the extended land required for drilling and exploitation. Generally, the geothermal unit delivers the maximum capacity, as less is the distance between the greenhouse and installed point of the drilling wells. That makes geothermal systems hard to be applied in already established greenhouses, unless a vertical ground source heat pump is used.
- MED Greenhouses require experts and well trained operators to establish and monitor the whole system, while proper education and training of the users is also required for its operation.

Transferability factors

- ☐ There is no significant geographical limit
- □ In vertical loops, ground is not the limit but the investment and functional cost demanded to drill to this depth and the accessibility in innovative technologies needed for producing geothermal heat
- ☐ Drilling aspects:
 - Geology
 - Hydrology
 - Land availability
- Access by the responsible ministry authority of the area
- An access to the spatial distribution data, therefore, of the area in which geothermal technology intended to be transferred will aid the experts to clarify the feasibility of the system in the specific area

MED Greenhouses – Photo Gallery 1/2

MED Greenhouses – Photo Gallery 2/2

Project co-financed by the European Regional Development Fund

Thank you for your attention!

Prof. Dr. Alexander Papachatzis (Project Coordinator)

med_greenhouses@teilar.gr

https://medgreenhouses.interreg-med.eu/

